Global analysis of microarray data reveals intrinsic properties in gene expression and tissue selectivity
نویسندگان
چکیده
MOTIVATION It is expected that individual genes have intrinsically different variability in the global expressional trend among them. Thus, the consideration of gene-specific expressional properties will help us to distinguish target-selective gene expression over non-selective over-expression. RESULTS The re-standardization and integration of heterogeneous microarray datasets, available from public databases, have enabled us to determine the global expression properties of individual genes across a wide variety of experimental conditions and samples. The global averages and SDs of expression for each gene in the integrated microarray datasets were found to be intrinsic properties, which were consistent among independent collections of datasets using different microarray platforms. Using the gene-specific intrinsic parameters to rescale the microarray data, we were able to distinguish novel selective gene expression [cartilage oligomeric matrix protein (COMP) and Collagen X] in breast cancer tissues from non-selective over-expression, a difference that has not been detectable by conventional methods. AVAILABILITY AND IMPLEMENTATION The web-based tool for GS-LAGE is available at http://lage.sookmyung.ac.kr
منابع مشابه
Modification of the Fast Global K-means Using a Fuzzy Relation with Application in Microarray Data Analysis
Recognizing genes with distinctive expression levels can help in prevention, diagnosis and treatment of the diseases at the genomic level. In this paper, fast Global k-means (fast GKM) is developed for clustering the gene expression datasets. Fast GKM is a significant improvement of the k-means clustering method. It is an incremental clustering method which starts with one cluster. Iteratively ...
متن کاملGlobal gene expression analysis using microarray to study differential vulnerability to neurodegeneration
Neurodegenerative disorders such as Parkinson’s disease, motor neuron disease and Alzheimer’s disease is characterized by loss of specific cells within certain regions of the brain. One of the most compelling questions is to determine why specific cell populations are vulnerable to neurodegeneration. We addressed this question by studying global gene expression changes using an animal model of ...
متن کاملGlobal gene expression analysis using microarray to study differential vulnerability to neurodegeneration
Neurodegenerative disorders such as Parkinson’s disease, motor neuron disease and Alzheimer’s disease is characterized by loss of specific cells within certain regions of the brain. One of the most compelling questions is to determine why specific cell populations are vulnerable to neurodegeneration. We addressed this question by studying global gene expression changes using an animal model of ...
متن کاملFeature Selection and Classification of Microarray Gene Expression Data of Ovarian Carcinoma Patients using Weighted Voting Support Vector Machine
We can reach by DNA microarray gene expression to such wealth of information with thousands of variables (genes). Analysis of this information can show genetic reasons of disease and tumor differences. In this study we try to reduce high-dimensional data by statistical method to select valuable genes with high impact as biomarkers and then classify ovarian tumor based on gene expression data of...
متن کاملMicroarray analysis of gene expression patterns in Arabidopsis seedlings under trehalose, sucrose and sorbitol treatment
Trehalose is the non-reducing alpha-alpha-1, 1-linked glucose disaccharide. The biosynthesisprecursor of trehalose, trehalose-6-phosphate (T6P), is essential for plant development, growth,carbon utilization and alters photosynthetic capacity but its mode of action is not understood. In thecurrent research, 6 days old seedlings of Arabidopsis thaliana (Columbia ecotype) were grown inliquid cultu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioinformatics
دوره 26 14 شماره
صفحات -
تاریخ انتشار 2010